
7
Examples

In this section we will present an illustration of the modeling techniques
discussed in this paper. The first example considers only the in-sample fitting and
the second one considers one-step ahead forecasts.

7.1
Example 1: Canadian Lynx.

The first set analyzed is the 10-based logarithm of the annual record of the
numbers of Canadian lynx trapped in the Mackenzie River district of north-west
Canada for the period 1821-1934 inclusively (114 observations). For further details
and background history, see (48), (58), and Wong and Li (1999,2000).We report
only the results for in-sample fitting because the number of observations is rather
small and most of the previous studies in literature have only considered the in-
sample analysis.

Many models have been proposed for this dataset. It is commonly accepted
that the data are cyclical, with a period of 9-10 years. Furthermore, the histogram
also shows obvious multimodality. A multimodality test was carried out by (12).

The variables were selected by using the same methodology used by (47). The
estimated tree using either AIC or BIC is a 1-split tree, whose the transition variable
is the yt−2.

g0(·) = g(yt−2; 9.9826, 2, 3.2655),

y1t = 0.5465 + 1.319yt−1 − 0.4655yt−2 + ε̂1t ε̂1t ∼ N(0, 0.0325),

y2t = 0.9892 + 1.5173yt−1 − 0.8832yt−2 + ε̂2t ε̂2t ∼ N(0, 0.0493).

This class of models has the ability to forecast the conditional distribution, so
we need to define another measure to compare it with other models. This measure
is the empirical coverage (1− α)100% 1-step ahead.

We have selected some models that were applied previously for comparison
with our model. The first model is an AR(2) model used in (48). Then, we compare
it with the Self-Exciting Threshold Autoregressive (SETAR) model in (58) and
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we also compare it with the Mixture Autoregressive (MAR) in (66) and with the
Generalized Mixture Autoregressive (GMAR) in (65).

The models MAR and GMAR have a mixture of Gaussian models as the con-
ditional density and the others have a Gaussian conditional density. It is important
to note that the Tree-MM model has the same number of regimes and the same
transition variable as the models SETAR and GMAR.

Tabela 7.1: EXAMPLE 1: EMPIRICAL COVERAGE.
The table shows the empirical coverage as well as the mean absolute
error (MAE) for a set of different models.

Empirical Coverage (1− α)100%
Model 50 60 70 80 90 95 MAE
AR(2) 50.00 58.93 68.75 75.89 88.61 92.86 1.99

SETAR 44.86 56.07 69.16 81.31 90.65 95.33 2.27

MAR 52.68 63.39 70.54 82.14 88.39 96.43 2.36

GMAR 47.32 58.93 68.75 82.14 92.86 93.75 2.25

Tree-MM 48.21 57.14 67.86 79.46 89.29 96.43 1.89

It is not simple to select a winner among these models because every one has
good coverage, so we need to use a measure such as the mean absolute error (MAE)
to choose the model with the best coverage. The model with the best coverage is the
Tree-MM, which has the smallest MAE, followed by AR(2), GMAR, SETAR and
MAR.

7.2
Example 2: Brazilian Financial Dataset.

In this section we apply the techniques developed in this paper in automatic
trading with exchange rates and stocks from the Brazilian market. We also compare
the results with an artificial neural network model (NN) built using Bayesian
regularization (MacKay 1992a,b), with the ARMA model, and the naı̈ve method
(the forecast for any period equals the previous period’s actual value). We selected
an asset which tracks the BOVESPA Index (IBOVESPA). IBOVESPA is an index
of 50 stocks traded at the São Paulo Stock Exchange, Brazil. The choice was
made taking into account the liquidity of the asset and its economic relevance.
The selected asset is the Petrobras PN (PETR4). The observations cover the period
from 01/20/1999 to 12/30/2004 (1476 observations). The sample is divided into two
groups. The first one consists of 1227 observations (from 01/20/1999 to 12/30/2003)
and is used to estimate the model. The second group consists of 249 observations
(from 02/02/2004 to 12/30/2004) and it is used for out-of-sample evaluation.

The set of covariates is composed of the first 10 lags of the log-return of the
asset, the first 10 lags of the volatility, the first 10 lags of the traded volume between
2 days, the first difference of the 10-day moving average of the return (MA10)
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and 20-day moving average of the return (MA20), and the first difference of the
following 10 exogenous variables: IBOVESPA, S&P 500 Index (S& P), US Dollar
(DOL), Treasury 10 years (T10), C-Bond (C-BOND), spread between C-Bond and
T10 (SOT), Oil NY (OIL), Swap 360 (SW360), Set of commodities (CRY) and the
Developing Countries Stock Index (BINDEX).

The statistial measures used to evaluate the model are the mean absolute
error (MAE), the mean absolute percentage error (MAPE), the root mean square
error (RMSE), Theil’s inequality coefficient (U ), and the correct direction change
(CDC). The financial measures are the mean return (R̄), the annual return (RA),
the accumulate return (RC), the annual volatility (σA), the Sharpe index (SR), and
the percentage of winning trades (WT ). Furthermore, we present the coverage of
the model and the statistics of the coverage for the NN and TreeMM models.

We first select the set of regressors using the procedure proposed by (52), then
estimate the TREE-MM model using the technique proposed here. We consider that
the series has the first lag of log return, daily volatility and trade volume between 2
days as variables, so the table shows the other selected variables, which are MA10
and CRY.

The estimated neural network has two hidden units and uses the whole set of
variables. The estimated Tree-MM model has one split and the transition variable is
the first lag of the daily volatility. The model is the following:

g0(·) = g(vt−1; 5.2572, 2, 0.0318),

y1t = −7.9906× 10−4 − 0.0542yt−1 + 0.0775vt−1 + 5.0897× 10−4qt−1

−3.6653× 10−6MA10 + 0.0180CRY + ε1t ε1t ∼ N(0, 1.9374× 10−4),

y2t = −6.956× 10−3 + 0.3382yt−1 + 0.1673vt−1 + 1.5762× 10−3qt−1

−1.6057× 10−5MA10 + 0.0167CRY + ε2t ε2t ∼ N(0, 6.5584× 10−4).

Table 7.2 shows the statistics for the models. The Tree-MM model, the Neural
Network model and the linear model have similar performance. The financial
measures, shown in Table 7.3, indicate that the Tree-MM model has the best
performance among the other models.

Tabela 7.2: STATISTICAL RESULTS

This table shows the statistical results for the different models.
Series ARMA Naive NN TREE-MM

MAE 0.012 0.016 0.012 0.012

PETR4 RMSE 0.017 0.022 0.017 0.017

CDC 60.48 58.065 65.73 62.50
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Tabela 7.3: FINANCIAL RESULTS

This table shows the financial results for the different models.
Series ARMA Naive NN TREE-MM

R̄ 0.68 0.50 1.65 1.45

RA 41.64 26.38 60.47 61.69

RC 40.98 25.96 59.51 60.71

PETR4 σA 24.45 22.59 18.47 18.31

SR 1.70 1.17 3.27 3.37

#T 60 52 36 42

WT 55.00 46.67 75.00 76.19

Next we present the coverage results for the neural network model and the
Tree-MM model. The results in Table 7.4 clarify precisely the difference between
the normal conditional model and the conditional mixture of models. While the
Tree-MM has very good coverage, the Neural Network model with Gaussian error
has a very poor one. The means of these two models describe the behavior of the
asset very well.

Tabela 7.4: COVERAGE FOR EVALUATED NN AND TREE-MM MODELS.
This table shows the empirical coverage and p-value of the Christoffersen statistics for the
estimated NN and Tree-MM models.

Empirical Coverage
Model Percentile 50.0 60.0 70.0 80.0 90.0 95.0 97.5 99.0

Est. Percentile 47.79 57.91 63.93 80.52 90.02 95.04 97.56 98.98

Tree-MM LRuc .0953 .0979 .9380 .6306 1.000 1.000 1.000 1.000

LRcc .0386 .0236 .9644 .7485 .8872 .9410 .9872 0.000

Est. Percentile 42.23 57.91 65.92 78.14 89.55 94.77 97.35 98.57

NN LRuc 0.000 0.000 .0007 .0754 .5607 .6978 .7426 .1257

LRcc 0.000 0.000 0.000 .0088 .3002 .8547 .8863 0.000

We conclude that the Tree-MM model works better than the other models
selected for modeling this asset. Furthermore, it captures better the characteristics
of the time series, being a good choice for modeling financial risk.
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